Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes
نویسندگان
چکیده
Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options.
منابع مشابه
Clean and Polluting DG Types Planning in Stochastic Price Conditions and DG Unit Uncertainties
This study presents a dynamic way in a DG planning problem instead of the last static or pseudo-dynamic planning point of views. A new way in modeling the DG units’ output power and the load uncertainties based on the probability rules is proposed in this paper. A sensitivity analysis on the stochastic nature of the electricity price and global fuel price is carried out through a proposed model...
متن کاملBanded vegetation in some Australian semi-arid landscapes: 20 years of field observations to support the development and evaluation of numerical models of vegetation pattern evolution
Periodic vegetation patterns (PVPs) are striking features of many global drylands. Although they have attracted wide research study, resulting in many hypotheses, their origin and controlling factors remain unresolved. Theoretical works dominate a large literature seeking to account for the occurrence and properties of PVPs, especially banded vegetation patterns (‘tiger bush’). In light of...
متن کاملThe prediction of Persian Squirrel Distribution Using a Combined Modeling Approach in the Forest Landscapes of Luristan Province
Habitat destruction is the most important factor determining species extinction; hence, the management of wildlife populations necessitates the management of habitats. Habitat suitability modeling is one of the best tools used for habitat management. There are several methods for habitat suitability modeling, with each of having some different advantages and disadvantages. In this study, we us...
متن کاملCost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors
Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...
متن کاملMulti-objective Dynamic Planning of Substations and Primary Feeders Considering Uncertainties and Reliability
This research uses a comprehensive method to solve a combinatorial problem of distribution network expansion planning (DNEP) problem. The proposed multi-objective scheme aims to improve power system's accountability and system performance parameters, simultaneously, in the lowest possible costs. The dynamic programming approach is implemented in order to find the optimal sizing, siting and timi...
متن کامل